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SUMMARY

In this c0n£ract (NAS8-25101), a systematic theoretical investi-
~gation of the dynamical behavior of the solar aétive region ﬁas been
perfofmed. As a result of these studies, we have concluded tﬁat the most
appropriate physical mechanism in helping to understand the distu;bed
solar atmosphere is the propagation of shock waves in a model solar
atmosphere. During the course of this contract, we have exaﬁined two
importanﬁ cases:

(i) -The'Downward Propagation and Response of the Chromosphere .

In this study, we have examined the responses of the solar.
chrompsphere to an infalling material stream resﬁlting from the
"disparition brusﬁﬁe" of a prominence. We found that the solar
chromosphere is heated by the shock resulting from the infalling
material stream and radiation ig enhanced. The enhanced radiation
terminates the shock around the height of the temperature minimum
in the Harvard-Smithsonian Reference Atmosphere model. This
radiation enhancement is identified as Optical (Ha) flares. The
detail of this study was submitted to thg NationgllAeronautics and
Space Administration, Marshall Space Flight Ceﬁter, as an Interim
Report for this contract, dated March 1972 (UARI Reseﬁrch Report No.

114). A part of this study is also published in Solar Physics,

Vol. 30, Page 111-120, 1973.
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(i1) The Upward Propagation of Soiar Disturbance and Its Responses
After completion of the study of the downward propagation of
—é'shoék through the chromosphere (frqm ~ 2000 Km to the sun's surface),
we felt it logical to examine tbe responses of the solar atmosphere

due to .an outward propagation shock. Therefore, in this final research
report, we shall report the results of this stﬁdy, since the other
results have been documented already. In this study, we have
employed the Lax-Wendroff method to solve the set of non-linear
partial differential equations, because the method of characteristics
used to analyze the downward propagating shock became invélid due
‘to non-homogeneity in the model of the solar atmosphere. It was
found that this theoretical model can be used to explain the solar
phenomena of surge and spray. A criterion to discriminate the
surge and spray was found. The detailéd information concérning
“the density,.velocity, and temperature d{stribution with respect to
the height aﬁd time is presented. The complete computer program

is also included in this report.

Finally, we would like to summarize the publications and research
reports resulting from this contract as fellows:
i. Refereed Publications

(1) "A Kinematic Model of a Solar Flare," Solar Physics,

Vol. 30, 111-120, 1973.

(2} '"Non-Equilibrium Ionized Blast Wave," J. of Physical

. Soc. Japan, Vol. 36, No. 1, 1974.
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ii.

(3) "Kinetic Description of Solar Wind Interaction with

"Small' Celestial Objects," Rarefied Gas Dynamics

(ed. K. Karamcheti), Academic Press, New York, 1974.

mn

(4) "A Xinematic Model of Surge and Spray, to appear in

So}ar Physics, 1974..
Research Report
"Propagation of Downward Shéck Waves Generated by Infalling
Dense Prominence Materials in arRealistic Solar Atmosphe;e,"

UART Research Report No. 114, March 1972.
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CHAPTER I
INTRODUCTION

During previous studies {1, 2], we féund that the optical (Ha)
flare can be identified with the response of the solar chromosphere to
a shock wave propaéatiug dowmward ;hrough the chromosphere. The shock
wave is related to an infalling material stream resulting from the
"disparition bruséue“ of a prominence as suggested by Hyder [3, 4, 5],
and-Nakagawa and Byder [6]. 1In the general impact theory, there are
always two waves geﬁeratea prqpagating in oppbsité directions right at
the moment of the impact. According to the coordinate system which
we adopted here, one of these two waves is propagating downward through
the chromosphere to the photosphere, andanotﬁer one is propagating upward
through the transition region to;the corona and beyond. The study of a
downward propagating shock‘thfough the cﬁromosphere has been completed and
reﬁorted [1, 2]. Therefore, we shall present the results of upward
propagating distufgances (either shocks or subsonic disturbances)
through a model solar atmosphere in‘phis report.

To calculate the downward propagating shock through the chromo-
sphere, we have uéed the CCW (Chisnell, éhester, Whitham) [7] approxif
mation which is based on the theéry of Chafaeteristics. However, it
is noted by Bird [8]. that this method of approximation has only provided
safisfactory accuracy for a shock propagating into a denser medium.

Therefore, it seems to us that it is not quite proper to aﬁply the CCW



approximation to calculate the outward propagating disturbances, because
the model solar atmosphere is éttenuated‘ outward. Thus, we have cposen
the Lax~Wendroff method [9, 10] for the present study. This is a
" numerical method, which has the advantage of taking care of both the
sub- and supersonic .disturbanbes. The numerical accuracy can be con-
trolled by using proper numerical techniques,‘such as by specifying the
proper time increament and grid size in the computation procesées based
on the physical model of the solar atmosphere.

In thislstudy, the evolution of thé.disturbapces, o;igina;ing at
.o~ 30,000 Km  (~ 0.6;28 R; Ry being the solar rédius. . ~.7 X lOSEnL 
is examined in detail using the method we mentioned in the previoué
parggraph. These disturbances are identified aspressurepulses with
differentstrengthéand durations. TFrom the present results,we have shown
Fhat the‘short duration (few minutes) and ﬁoderate gtrength pressure
pulse (A p ~ 2) will result in the phenomenon of "surge," because it

shows that a stream velocityof ~100 - 200 km/sec can be achieved in this

case. 1t also demonstrated tiat there is—an-essential part of the material
falling back.to thé sutls surface which agrees with the obsefvation.
The longer duration (i.e., ZO—AQ'minutes) and stronger strength pressure
pulse (Ap ~ 10) shows that a stream velocity of the order of 1000 km/sec
is achieved and no falling materials can be seen. Thus, we have identified
this case as the "spray'.

Fiqaliy, we should point out, that there is little difference hetween

the adiabatic calculation and the calculation with a Cox-Tucker type



radiation loss as has been shown in the calculation of the downward
gropagating casel[l]._ This is becguse the Cox-Tucker [11] radiative
~loss 1s mainly based on the hydfogeq—equilibrium radiative-equilibrium
estimation that only covers rﬁdiation such-as the Balmer

series, Tt 1s worthwhile to examine the radiative effeéts in further

detail.



CHAPTER 1I

FORMULATION OF THE PROBLEM

II—iA Hydrodynemics Model-

In the solar atmosphere of interest in the present study, the
gyro-radius is ~ 10 km, and while the scale.height is of the order of
a thousend kilometers, we can consider that the medium is filled with
collision~dominated plasma. Thus, the physical behavior of this plasma
can be considered as a continuum fluid.'.Consequently, the hydrodynamic
medel was chosen for the present problem. |

In dealing with radiative-cooliné effects in this problem, we .
have chosen the Cox~Tucker model [11], because the domiﬁating radiation
in this part of the soler atmosphere results_from bremsstreahlung,
recombination radietion, and collision-induced line emission. A summary
~of this radiatiﬁe loss 1s shown in Figure 1. For the convenience of the
nqmefical calculation, a simple, analytdcal cloeed—form expression 1is
adppted,

g = xo® 1. (2-1)

The symbol Qg is the radiative cooling rate (ergs/em’sec), p ie the gas
mass density (gm/cm®) and T is the temperature CK). Finally y and o
constants determined by‘the results given by Cox and fucker, as shown
in Figere 1. The numerical values for theee two constants at various

temperatures are presented in Table 1.



Table I. Temperature of Radiative Cooling Rate’

Range of Temperature OK | X S o
T < 5.0 x 10" | x=1.0 x 10" a = 3.55
5,0 x 10% < T < 2.5x10° | ¥=3.0 x 10*® =0
2.5%x10° < T £ 7.0x10° x=1.0 E* o = =1.172
7x10% < T y=1.0x 1023 o = 0.288
gives 0 =y p? T (ergs/cm’sec)

As we have discussed previously, the hydrodynamic'modei,can be
used for the.bresent Study. In order to avoid unnecessary complexity
while retaining the basic'physical process of the probleﬁ, we consider
the plasma flow guided-upward_along a vertical magneﬁic flug tube. The
pos;ibilify qf-such a confinement ié discussed by Nakagawa and Hyder [121,
and it was shown that 7 ‘ébnfinEment igs possible when the gés pressure
within the plasma flow is smaller than the local magnétic pressure,'i.e.,
- |
o> g MR (2-2)
where B is the strength of mapgnetic field induction, ¥ the ratic of
specific heafs, M the shock Mach number and p the gas pressure. If we
considgr that the maximum gas pressure in the model of the golar atmo-
sphere is ~ 1.5x10~'cgs, which corrésponds to the gas flow velocity
of the order of 4}{102Km/sec,we find thét Eq. (Z-é) is éatisfied for
Bz 6OG; which is a reasonable value of Bin an active region. Therefore,
the magnetic force effect can be ignored in this calculation. The

governing equations for the present problem can be written as



Continuity:

ap >
- . . = 2=3
oy + Ve (pV)y=20, (2-3)
Momentum:
W |

p—a-;ﬁ?-vi? =-Vp+p§,f . 3 (2-4)

Fnergy:
g Qe - -
Pt (VeV)y e = -pVV+ VET) - Qg (2-3)

> RS
where V is the flow velocity and g is the gravitational acceleration along

the normal axis from the sun's surface,toward the sun. ¢ is the internal
energy of the gas per unit volume, K is the thermal conductivity and Qg
is the radiative cooling loss rate given by Eq. (2-1). Finally the

equation of state is

p = PRT = pE_T s (2-6)
m
and
B=CyT = —o b (2-7)

p(y-1) 7

with R, k, m, and Cy being the gas constanf, Bolfzmann constant, average
molecular weight and specifiec heat at constant volume,respectively.-

Let us adopt the spherical coordinates for the present study,and
further assume that the case of spherical'symmetry, the thermal con-
duction is negligible compared with radiation. The Eqs. (2-3) through
(2-5) become

op 3 2pu '
i L P + £E2 - -
™ (ou) 0 (2-8)

at



ot ar p or
e, .38 _ p (30, 30\ ~ (2-10)
ot T %% T b (at o) &R

where u represents the radial velocity and depends on radius r
and time t .

The gravitational acceieration g 1s given by

R3 ' :
g = 252, | (2-11)

with gg being fhe gravitational acceleration at the surface of the sum,
and Rslbeing the solar radiué.
Eq. (2?8) through (2~ 10) are set of non—iinear time.dependent
partial differential equations without dispersionrcoefficients (i.e.,
viscosity,.diffusivify,retc.). To find an analytical solution for this
set of equations_with varlous boundary copditions is impossible. How-
ever, itris possiﬁle to obtain a numerical solution. Some discussion
on the existing numerical method will be given in the next chapter.

IT-2 Initial and Boundary Conditions .

II-2-1 Initial Conditions

Initially, we have assumed the solar atmosphere at the photosphere
and chromosphere to be the-Harvard—Smithsopian Reference Atmosphere (HSRA)
"[13]. Beyond its range, the solar atmosphere is assumed to be in a state

of hydrostatic equilibrium, which can be calculated from Eq. (2-4), thus

dn® .
=% = - P Ry/r” o (2-12)



 where supérscript o denotes the quantities at steady state.

Substituting p® = p°RT° into (2412), we obtained

2

‘ o
de0(r) | oy | Bfsl L, 1 d41%(r) (2-13)
dr 6 " I RTO(r) r TO(r) dr
Eq. (2-13) should be numerically integrated for a given temperature

profile of the atmosphere. lbwever for an igsothermal atmosphere Eq. (2-13)

redices to a simpler form

R2

L.ode o - B s . . C(2-14)
o dr - RT®  r? ' :

Integration of this equation yields the solution for the density profile of

the hydrostatic atmosphere,

2
s Rg i 1 '
00 = p;) Exp [ — (; ~ r—]? . | (2-15)

where po is the reference density at r
Q

if

ry. Steady state pressure ‘

distribution is then

g. B2 ' | _
po = pz Exp ._%__55_ (l - —1-—)] s (2~16)
RT \F Ty _

where.pz is the pressure at r = rl.



11-2-2 Boundary Conditions-

There are two bOundafy conditions, one at r = 0 anq one at r ©,
to be given..'The lower boundary condition will be characterized by
_disturbaqces such as density pulse, temperature pulse, velocity pulse,
and pressure pulse. To introduce these pulses, we can specify them by
prescribing.the amplitﬁde and duration of the pulse which depends on the
characteristics of the disturbances.

For example, the disturbance is introduced at thé IOWEr‘boundary
as‘a pressure pulse and the veloclty is zero at t = 0, But, the velocity
on the boundary fo; t >0 Qill be determined from the continuity equation

thus

ull = o ey (2-17)
whére subseript 1 denotes the boundary and 2 denotés the mesh point
next to the boundéry, superscript ﬁ denotes the tiﬁe increﬁent, such
that t = nAt ﬁ_r, T Being the duration of the disturbance. When t > T,
digsturbance ig gone, and the lower boundary returns to its. unperturbed con-
dition, i.e., a hydrostafic egﬁilibrium state.

Cn the upper bqundary we have used the completely absorbed éon—
dition, i.e., all the effects due to reflected wéves are ignored. The
reason for keeping this assumption is becausé tﬁe time for the reflected
wave to reach the upward-propagating wave packet is much ionger than

the time for the upward-propagating wave to reach the upper boundary. Thus,

the non-reflective boundary condition for velocity can be expressed as



¢;‘ = 2¢;11- ¢;‘2 ' (2-18)

where ¢ represents a physical quantity, the subscript j denotes the mesh

points at upper boundary and superscript n denotes the time step.

10



CHAPTER ITL

NUMERICAL TECHNIQUE

Nﬁmerical computation of time dependent in?iscid, compressible
'flow is a formidable task becauselof the appearance of discontinuities
in the flow field. The conventional way £o éolve.hyperbolic types of
differential equations is the method.of characteristics. In this method
partial differential equations are usually written in characteriétic form.
Due to the presehce of discontinuities in the fluid, these characteristic
equations can not be integrated over the entire region of space. Instead,
the integral fofm of the differential équations is used for the dis-
continuities while differential equations are applied to the reﬁaining,
region. Although this method is very simple in principle, its application
to practical probiems is very lengthy and cumbersome. Furthermore, the
fact that one cannot know the time and location of such discontinuities
in flow field priof torthe computatiﬁn makes appllcation to actual problems
almost impractical. Watts and Rosenverg;et.al. [14] solved the transient
adiabatic compressible fluid flow in aduct by using the characteristic methoﬁ
in an elegant manner. Their method cén be, in principle, extended to
solve the present problem. However, the résulting computational procedures
‘'will be too ﬁomplicated to be practical. It may be worthwhile to examine
thislmethod in some detail at a later date. Gentry, et al., [15]
used the FLICmethod, known as Fluild in Cell, to describe the time dependent

equations of motion for the compressible flow-of a fluid. This method has

11



been used to solve a wide variety of problems in_compressible fluid flow.
Hundhausen, et al, [16] used this ﬁethod torsimﬁlate the fla;e gene;ated
disturbances in the solar wind.

Currently, the most commonly‘adépted method. for solving the
compressible fluid flow problem is probably the Lax-Wendroff difference
method. Lax-and Wendroff [9, 10] suggested that partial differential
equations are first written in divergence free form, and then the
difference equations in the divergenge free form can be ggnerated from
these equations. The mathematical proofs are beyond the preseﬁt scope
of these sfudies.and will not be presented in this report. However, the
basiclidea of this method is that errors caused by tﬁe discretization
process tend to smooth the solution. This.allqws thé representation
of shocks by smearing discontinuities over sgeveral mesh points.

There atre many versidns of the difference scheme for the conser-—
vational form of equatioms. Some.detailedlcompérisons among thesé versions
are made by Ehmery [17] and Burstein [18, 19]. One version due to Burstein
{201, is used for the present study.

IT11I-1 Conservational Form of Equations

Divergence~free form of the governing equations will not create or
eliminate any flow variables. After some algebraic manipulation (see
Appendix A) the governing equations [2-8], [2-9], and [2~10] can be written

in Eulerian pseudo-conservational form;

12



13

B = -3 (pu) - Hu (3-1)
at T r
M = - ..?.._ (Y_l) E - ..gl_..B._}. DU.2 ~Pg - 2pu (3—2)
ot ar 2 T
3E 3 ( (y-1) 2)] '
o = |U{YE =~ - pug -
- 3t Br[Y 2 > Pue ~ O
2 1 pu?
- = {u(YE ~ (y=1) =) | (3-3)
T 2
where E is the total energy per unit volume, given by
2., pdt
E =331 * 7 (3-4)
Using vector notation, Egs. {3-1), (3-2) and (3-3) can be put in the
~ form
ol _ 8F
2 = - + K -
at or ~ (3 >)
_where g; g and g are three components vectors;
p .
U = |pu (3-6)
E ]
pu
-3
¥ = | -nE - ﬂ—z—)— pu (3-7)



_ -1
2pu
r
2
K= | -pg - 2L (3-8)
2 pu?
-pug - Q, ~ = ju(yE ~ (y-1) )
L R r 2 =
Using the difference operator, Equation (3-5) is approximated by
8¢ U = -Gr F + K, where : (3~9)

6y and o is yet to be discussed. There are several versions ofLax—Wendréff
difference-séhemes which have been extensively usged for a wide range qf
fiuid flow ﬁroblems.

Lax—Wendfoff scheme is based on fhe Taylor series expansion of the
vector function U(r, ¢t + At) so as to include the second order term
B%Q/Btz. A two-step method obtained by Richtmyer [21] is used here.
The wvalues at tﬁe intermediate points are computed at a time t + At/2
using a first-order correct scheme, and then a second~order correct scheme
(leap frog) is used to compute the value at time.t + At. The overall
scheme has, thena second-order correct differéncing scheme., Burstein, e¢+-al.
[20] suggested that instead of computiﬁg the intermediate value at time
t + At/2, they compute them at t + At and then.average the F difference
at t and t + At so that both the U and F wvalues are centered at point
(i, t + Ae/2). The above differencing method ap?lied to Equation (3-5)

yields the following difference approximation:

14



Intermediate Values

—ntl 1/n n At n oh Aﬁ n- n} |-
g™t = X +pr)- 28 (p? - ¥R} 4+ 8L +
~itl/2 2 ('{‘J'i.;.l "'i) Ax (~i+1 ~i) 2 (51+1 K'i)

gl 1 n Il At n n At n n
Yi-1/2% 3 (Ei +_*[‘li*1> - 35(31 “Eia)t T (K R, (-10)

ntl 1 n a At 7 n ‘n n
== + - — -
! 2 (E‘i—l “U‘i+l> 2Ax ("Eiﬂ_ 'Ei_l) + 0t K

where the bar signifies the intermediate flow variables at (i-1/2)Ax, iAx,
(141/2)Ax and at (n+1)At. Using these intermediate values of the variables

we calculate the final values.

Final Values

ntl o m At |1 (. n okl —ntl |
L M7 [I (£i+1 N 31—1) f(~F~1+1/2 Ei-1/2
o | (3-11)
At n —otl
+5 K, *E y
p —n+l —ntl 7 -n-!-l
where the intermediate values o Eit172 »  Ei-1/2 end K; = are
calculated by usging Eqs. '(3-7) and'(3—8) with intermediate flow

varigbles obtained in the previous step. Combining Eqgs. (3-10) and

(3-11), it is easily seen that this is a second-order correct-differencing

schene,

15



I11-2 DNumerical Stability

Finite differepce,equations,may exhibit rapidly growing and
oscillatory solution that cannot resemble the true solutions of partiai
differential equétions. In this case, the difference equation is said
to be computationally unstable. The origin-of'inétabilities varies.witha
| particular sgt of partial differential eéuatioﬁs. Many theories and
criteria have been developed by mény investigators, such as Richtmyer
~and Morton [22], Hirt [23], and Van Leer [24]. Howeﬁer,,it is not possible
to have a general theory for higher-order non-linear eﬁuations, such as in
the present probiem. The diséussion given here isrnot_rigﬁrous, but
presents some heuristic techniques which prove very usefulin stabilizing
the computations.

III-Z-l Time Interval
As arfirst approximation,ithe time interval for successive interations can

be found by applying the stability criterion of Courant,Friedrichs and Lewy,

‘ ' Ar
s lu] +a (3-12)

where a 1is the local sound speed. When a thermalconduction term is included
in the governing equations, thermal conduction stability criteria should
be considered. Applying the Fourier method proposed by von Neumann con-
cerning the heat conduction equation, one finds the time interval E]Atcto be
1 (Ar)?
5 P (Ar)

Be © K(y-1)17/2 T | G-19

16



In the cage of heat exchange terms becoﬁing arbitrary, namely Qg , the K3
véctbr in Eq. (3-8) of the present problem, can be varied very rapidly.
When such a case occurs, numerical oscillation starts and computation
terminates. In order to smear out such oscillation,‘the time step is

chosen according to

l _p
log| Aty <3 ot (3-14)

For a model that does not include the conduction term,_0;25 &ts is
sufficiently small to satisfy all sFability criteria.
ITI-2-2 Artificial Viscosity

If the strength of the disturbance is large, a sharp jump in the
flow variable occurs in the flow fleld. We can find this jﬁmp condition
by applying the Rankine-Hugoniot relations. In numerical simulation, these
discontinuities easily cause the onset of instability. Thus, the artificial
viscosity is introduced to help offset the instability. The idea of
introducing artificial viscosity into shock calculations is due to the
work of von Neumann and Richtmyer [25]. The basic requirements for a
purely artifieial dissipative term are:

(1) all flow variables should have smooth trénsitions across the

" discontinuity;
(11) transitions should have correct jump conditions computable

with Rankine-Hugoniot conditions;

17
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(1ii) the discontimiity should travel at very nearly the .correct
speed; and
(iv) the thickness of transition is independent of shock strength,
pressure or density of material while the shock 1is moving [26].
Introducing a pséudOﬂﬁﬁcouspressure term in the compression zone,
it is showm that all requirements for the artificial viscosity are

T

satisfied. The pseudo-pressure is given by [26]

2 (3u)2 /
(p22) if  3u/or < O

4] if oufdr > 0

where & 1s a constant having the dimensions of length. Then the total
energy, Eq. (3-4), for the compression region, du/dr < 8, is modified

to include the pseudo-pressure, such that

g=PR%t4d,pu | - (3-16)

It is seen clearly that this correction only affects the compression region
and that the continuity equation is inact by this modification. Letting

% = BAr, the appropriate difference approximation for the altered pressure

is thenr
1 2
n n L oH2 N n n ) n n.
(ptq) =1tp, + B8 p, (u. - ) if y.,4 Su.
5 i 2 i+l i . +1
. " * * (3-17)
n
po ifu, _zul
1 i+17 1
for the intermediate step, and
oyl ol 1 o2 ol (= ™ ntly  _ ol npil
+ = 4= -
P95/ Py, BT Py P Ueis2 Ui < Pgay2
+1 . - n+l  _ o+l
Py H 8 2954y,
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for the final step of computations, where — signifies the inpermediate
values, and A has the value of 1 to 5. The effect of q on thé overall
picture is carefully tested by several trial runs. Tﬁere is no significant
change in flow variables except at discontinuities, and the transition
occurred over 3 or 4 mesh points.
I1I-2-3 Shock Dissipation

Mechanical energy carried by the shock wave is dissipated into thermal
energy of the gas which experiences an irreversible, non-isentropic process
as the shock front passes -thruugh the gas. For a unit mass of gas, the
thermal energy increases in terms of enthalpy which depends_on how the
post shock gas returns to its pre-shock gas state. Schtzmann [27] suggested
that the gas expands adiabatically until it comes back t; the initial
pressure and then cools down until it reaches the initigl density. Along

this path, the change of enthalpy is given by [28]

AL = - LYo 1,1\ _x (p,Pe (3-19)
2 P Po Y-1 \p g

where subscript o denotes the pre-shocked gas. Then, for aperiodic disturbance

- propagation, the total enthalpy change of the gas ig

o = -2 an (3-20)
. w
where w is the period of the disturbance. Letting
1/2

Eq. (3-20) becomes

19



2

- Po% (1,4 (L Y (2 _
q, = - [2 (wl)(g+1) -——(c+1)], (3-21)

Wy y-1

where Y and ¢ are functions of shock Mach number; that is,

[D:._zl_Mz-— l:_l-
v+l S y+1

(3-22)
, (y+1) M2
g = >
(y-1) M~ +2 !
3
shock é eed relative to pre — shock gas
: - N (3-23)

8 sonic speed in pre-shock gas

The detailed structure of the shock front must be known in terms of its
pbsition and its strength M, in ordef to find the accurate shock dissipation
in the.gas. However, it is not possible to determine the exact position

Of the shock front, since the transi#ion occugrs over several mesh points.

It is not.quite clear how to determine the exact shock strength Mg in

this numerical calculation. The pressure difference between the neighboring
points does not give the shock strength, because the unperturbed solar
atmosphere poésesses;adensiyt gradient. In order to give an

approximate shock strength at position iAr, the following equation is

employed:
u -1 ‘
M, o= 1t (3-24)
i a- .
i

This equation only gives a parameter which is related more to the local
gas flow than the shock strength. In other words, Eq. (3-24) is

a sufficient condition for a shock, but not a necessary one. It does,
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however, provide a mechanism for continuously monitoring the presence of the
discontinuity,whenever the discontinuity occurs,in a very simple manner.
In computétion, then, from Eq- (3-21) with Eqs. {3-22) and

(3-24), the dissipated energy due to the shock is included in the form

. a? N * 2
(QD)n o P S A I A7 DY S\ N A (T Ul <1(3-25)
i Wy 2 1 0';1 v-1 \'i i

0
For a dynamlic model, the exact value of w cannot be defined. An estimation
of w is made on the ground that the weak shock travels one mesh point with-

in the time At i.e.,

S’
Ar

At I rre——
Iul + a

=

Since the Lax-Wendroff method is an explicit difference scheme, disturbances -
travel one mesh point for each full iteration. Thus, w eguals to Atg
approximately. Without the addition.of Qp in the K3 term in equation (3-8), the
temperature of the gas just ahead of the shock goes negative sometimes, and the
caleculation is terminated. With this modification, the solution remained
stable and there is no noticeable differénce in shock structure.
I111-2-4 Minor Modifications-bn Difference Equations

Due to the exponential decrease of ﬂensity in a quiet solar atmosphere,
the difference scheme needs two minor modifications.' For a hydrostatic
solar atmospﬁere, the density variation along the r-direétion is

from Eq. (2-15),

?

oo

n n
pl exp (—hiri/Ar),' {3-26)
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where
By

h . = —— 5 Ar  (scale height). _ (3-27)
i RT
1
Then the nearest-neighbor average value appearing in the first term

in RHS of Equation (3~10) is larger than the value at the central point, i.e.,

. n -1'1
0.5 I:pr; (e'hi +e by )]
2 ‘ : n\e
n n n (hi) ) n
0.5 2+ (1Y |= 1+ 1> 3-28
oi[ ( i)] ) ( . o7 (3-28)

If this difference 1s not corrected, the density after the intermediate step

0.5 (p“ + ot )
1-1 i+l

will become excessively large, and the unchanged vertical pressure cannot
support this excess material. Consequently, a downward velocity appears over

the entire field. Instead of a simple average, an expression

- n . n + 1A n + 1
0'5'(pi~1+ pi+1> [pi 0.5 (pi-l 'pi+1>]

is used for p:.

Rearranging this, one gets

' n :
5 (" + 0P )+ 0.5 0% [1-0.5 (BT + h)] )
0.5 (pi_l oi+1) -5 0} [ 0.5 ™M1 + e ™M (3-29)

If the nearest-neighbor points have the same value as the center, then

Eqi (3-29)} reduces to the simple neighbor-points average value.

| In the process af calculation, the 2Znd correction term in Eq. (3-29), is
applied for the intermediate step of each iteration for all conservational
variables at full mesh points.

Due to the exponential variation of the hydrostatic equilibrium state,
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the difference approximation is systematically different from the

derivatives they approximate. That is why the error grows from Eq.

(3-26),
3pl nY , |
] i n .
= L — 3_30
or ar Py | (3-30)

But the simple centered difference approximation to the first derivative

with respect to r gives

n n '
on = Pi-1— P41 _ e
r i 2Ar - 2Ar =

(3-31)

S

Ar 6 i 3r

”
In n n
- ____.hi (l+ —«-—(hi) ) plt < -——.-api .

Unless this discrepancy is corrected, an incorrectly calculated pressure term
in Eq. (3-2) will set the flow field in an upward motion. In order

to avoid this non~physical situation, a correction term CE is defined such

that
aps

(ar+cfi‘) on = ZBi (3-32)
i 3y

" Combining Equatioms (3-31) and (3-32), c® is found to be
1

' n
c? = - L {%? + 0.5 (e'hi - +h?j} (3-33)

i Ar

This correction term is included for both sgteps in each iteration.
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I1I-3 Computation Procedure

The actual calculation procedure for the present problem is
illustrated in Figure 2.

The steady state temperature T of the atmosphere is assumed to be known

and the steady state density is found by using Eq. .(2—15), i.e.,

, ,
g R
Dn = pn Exp = 8 (;— “'l*) . (3-34)
i 1 RT; Ty 1 ‘

For a hydrostatic equilibrium state the velocity of the field is zero,

_ - | 3-35
ui 0 ( )

The total energy is then, from Eq. (3-16),

2
n n n . n
g = i i 4+ i1 , (3-36)
i vy -1 Zp?

where pz and qj are determined by Eqs. (3-17) and
(3-18), respectively.

.The digturbance at the lower boundary is iﬁtroduced in terms of a
pressure jump.. For instance, p: = Zp;, TE = TE will give p:/p? = 2.
This arbitrary disturbance‘ was kept constant for a prescribed time
iﬂterval 7. After this periocd of time, the lower boundary returns to its
original state.

The time increment At is found by the CFL (Courant-Fredricks-Levy)

condition, and is applied to each mesh point inthe flow field.
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Using these initial values of conservational variables, the

fluxes at time (nAt) are found from Eq. (3-7) and (3-8).

FE = (pw)?

1 (pu)

n _ n_ -3) n  ny2

n _ n n_(y-1) n ,n
Fi, 1 (Y By -~ Py ¢

n n

I

14 —

. i
g - of _ 2 D? (Ug)2

2 g 8 5 ———

Y
R T NP

n n 2 n n py (U3) n

Ry, = - Py uj 84 = @)y - 7 [ui (YEi-(Y-l) )|t (QD)i

where

B = Bg R; /(ri)z; gravitational acceleration
B is given by Eq. (3-25).

n - n .o
@), = = x e} @D

and (QD): is given by Equatiom (3-25).
Using these fluxes at ndt, the intermediate comservational flow
variables at (n+l)At are found from Eq. (3-10) with Eq. (3-29). Inter-

mediate fluxes at (n+l)At are found by similar manner as those at nAt

except intermediate flow variables, U;l should be used in Eq.

{(3~29) and (3-33). The new flow variables at {(nt+l)Atare then calculated
by using Eq. (3-11) with the aid of Eq. (3-33).
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CHAPTER IV

RESULTS OF COMPUTATIONS

Numerical results are obtained for given various initial boundary
conditions identified as a pressure pulse with different amplitude- and
duration reéulting from possible solar disturbances due to solar actiﬁities.
~All disturbances are placed at the lowaf boundary which is located at
~30,000 Km (1.043 Rg)above the sun's guyrface, and all the calculations are carried
out to ~ 3 Rg (Rs‘being the solar radius). The resﬁlts obtained_in-this
report are the density, temperature and mass flow velocity as a function
~ of height and time for Ap (pressure disturbance) equal to 2 ~ 10 and
At (duration of the disturbances) equal to 30 sec, 60 sec, 120 sec; 1200
seé,andin some cases, 2400 sec. A detailed discussionof these results
will follow.

Figure 3a, b, and c plotted the disturbed density, temperature and
velocity due to disturbances of Ap = 2 and AT = 120 sec. It shows that
the disturbance has little effect on.temperature and density and its
influence on mass flow velocity is significant. 1t appears that this
disturbance has created a mass stream shoating out frmntheupperchromcsphere
or/lower corona to ﬁpper corona with a flow velocity ™~ 50 Km/sec at~ 1Rg
from the sﬁrface (i.e., ~ 2Ry from the center of the sun). Similar plots
with different initial strength and duration of disturbances are
given in Figures 4a, b, ¢ through 11 a, b,lc. These results clearly

demonstrate that the characteristics of the disturbances are the essential
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parametersof the effects of the disturbed solar dtmosphere.

Some geﬁerai features of theldisfurbed solar atmosphere can be
observed from these results. Némely} the stronger ini;ial disturbanqe
gives a stronger temperature enhancement and its mass £low velocity can
reach as high-as 1000 Kﬁ/éec,andealonger duration of the disturbance
will sustain the disturbed solar atmosphere; and thefe will Ee material
falling back to thel5un's surface. TFor example, we have plotted the
velocity versus height for Ap = 6 and AT = 30 sec, 120 sec, lZOO‘sec,
apd 2400 sec at t - 40 min. after explosion. This showézthat the negative
velocities (i.e., downward velocity) appeared near the surface of the
sun for AT = 30 sec, 120 sec and 1200 sec and for AT = 2400 sec, mass
flow velocity just ejects out from the sun's.sﬁrface alllthe way. From
this evidence, we may suggest that the surge develops due to a short
dﬁration disturbance, because, observations show . the material falling

. A
back to the sun's surface during a. surge. .

Now, we shall calculate the total energy of the disturbance initially
introduced into the solar atmosphere. The total energy can be computed

from

- @) By 5 @ og ud) (4-1)

where on the right hand side, the first term represents the internal energy

and the second term represents the kinetic energy of the gas in a volume

(g%} . The results corresponding tovarious disturbances are shown in Table II.
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Table II -

Total Energy Per Cross—Section Area for Fach Disturbance

(ergs/Km?) -
Ap At = 30 sec AT = 120 sec AT = 1,200 sec AT = 2,400 sec
10 7.31 x 107 9.42 x 1018 3.80 x 10% 6.72 x 10%
6 1.98 x 10Y7 2.63 x 108 1.38 x 10% 2.76 x 10%
2 2,60 x 10% 1.48 x 10V 1.8 x 10

If we consider the cross-section area of a -

of ~

Ap

of a

disturbance which has a radius

500 Km., it will give a total energy of ~ 5.28 x 10%® ergs for the

10 and AT = 2400 disturbance. This may correspond to the total energy

class of sub~flare.

From those density profiles, such as Figures 3a, 4a, 5a, 6a, 7a,

Ba, 9a, 10a, and lla, we can estimate the amount of particles which can be

ejected into the corcna (or scolar wind), and the results are given in Table ITI.

Total Number Particles Per Cross Sectional Area

Table ITI

for Each Disturbance (#/Km?).

Ap At = 30 sec At = 120 sec‘ AT = 1,200 sec At = 2,400 sec
10 4.77 x 10% 5.87 x 107 1.87 x 10 3.44 x 10%
6 2.60 x 10% 3.37 x 10%7 1.42 x 102 2.85 x 107
2 5.5 x 10%° 7.30 x 10% 3.43 x 10% |
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Again, 1f we consider the cross—section area of the distufbance‘being
?500 Ka in r;'idius, we find that 2.7 x 10%° particles can be added to the
- corona, which is believed by many to bera reasonable number.

‘From this study, we have shown that the surge and spray can
result from disturbances in i:he golar atﬁUSphere. After the
disturbance has been introduced, the c&fona may.éettle into a new
equilibrium state. Evidence for this has heen reported in some of

the observations from the ATM/Skyléb experiments.

29



CHAPTER V

CONCLUSION AND RECOMMENDATIONS

In this investigation, we héve examined the upward propagating
solar disturbances in a model atmdsphere. It'éas found that the
characteristics of the disturbances have dominant effects on fhe
" disturbed solar atmosphere. We may conclude from this study that the
phenomena of surge and spray can be discriminated by the characteristics
'of the initial distufbance, as we discussed in the previoﬁs chapter. Also,
the present model can be used to examine the observed X-ray data from the
Skylab mission by reiating the X-ray emission to the dynamical responses
of the solar atmosphere. The initial disturbances introducgd in this study
can be either subsonic or supersonic without limitations,

The radiation effects on this problem were examined by using the Cox-
Tuckerrradiation loss function. .We found that.there is no noticeable
difference between the adiabatic calculation and the radiative calculation
with the Cox~Tucker radiative loss function; This 1s due tolthé fact that the
radiative loss function given by Cox-Tucker is QEcreasing as ﬁhe
temperature is increasing. Therefore, it is necessarylto calculate the
radiative logs energy from tﬁe spectral lines in order to have more
accurate results. Also, we_have ignored the transport effect in the presenf
analysis.

Finally, we shall outline as follows, the steps which should be
taken to improve the present analysis:

(1} Include magnetic field in this model calculation.
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(2) - Inelude thermal conduction effects.
3) A detailed radlative hydrodynamic calculation:

procedure needs to be considered.

31



9.

10.

11.
12.
13.

14.

15.

16.

17.

18,
i9.

20.

REFERENCES

S. T. Wu and S, M. Han, "Propagation of Downward Shock Waves
Generated by Infalling Dense Prominence Materials in a Realistic
Solar Atmosphere,” UARI Research Report No. 114, March 197Z.

Y. Nakagawa, S. T. Wu and S. M. Han, Solar Phys., 30, 111, 1973.

C. L. Hyder, Nobel Symposium %, Mass Motion in Solar Flares,
(Ed. Yngve Ohman) John Wiley and Sons, 1968.

C. L. Hyder, Solar Phys. 2, 49, 1967.
C. L. Hyder, Solar Phys. 2, 267, 1967.

Y. Nakagawa and C. L. Hyder, Environmental Research Paper No. 320,
AFCRL~70-0273, 1970.

G. B. Whitham, J. Fluid Mech. &, 337, 1958.
G. A. Bird, J. Fluid Mech., 11, 180, 196l.

P. Lax and B. Wendroff, Comm. on Pure and Applied Math.,‘lg, 217,
1960.

P. Lax and B. Wendroff, Comm. on Pure and Applied Math., 17, 381,

1964,

D. P. Cox and W, H. Tucker,'AStrophys. J. 157, 1157, 1969.
Y. Nakagawa and C. L. Hyder, Private Communication.

0. Gingerich, R. W. Noyes, W. Kalkofen, and Y. Cuny, Solar Phys.
18, 347, 1971.

J. W. Watts and D. U. Rosenverg, Chemical Eng. Sci., 24, 49, 1969.

R. A. Gentry, R. E. Martin, and B. J. Daly, J. of Comp. Phys. 1,
87, 1966.

A. J. Hundhausen and R. A. Gentry, J. of Geophys. Res., 74, 2908,
1969. :

A. F. Emery, J. of Comp. Phys., 2, 306, 1968.
S. Z. Burstein, AIAA J. 2, 2111, 1964.
5. Z. Burstein, J. of Comp. Phys. 2, 198, 1967.

S. Z. Burstein, J. of Comp. Phys. 2, 178, 1967.



21.

22.

23.

24,

25,

26.

27.

R. D. Richtmyer, NCAR Tech. Note, 63-2, 1963. °

R. D. Riéhtmyér and K. W. Morton, NYO'lS&O—S, August 1964.
C. W. Hire, j. of Comp. Phys., 2, 339, 1968.

B. vanLeer, J. of Comp. Phys., 3, 473, 1969.

J. von Neumann and R. D. Richtmyer, J. of Applied Phys., 21, 232,
1950.

R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-
Value Problem, Interscience Publishers, New York, 1967.

E. Shatzmann, Solar Astronomy (Ed. J. N, Xanthakis) Interscience
Publishers, London, 1963. .



Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1

2

3a

3b

3c

4a

4b

b4e

5a

5b

5¢

ba

6b

fc

7a

LIST OF FIGURES

Cox-Tucker Radiative Loss Function

Flow Chart for Calculation

Disturbed Density (gm/cc) Versus Height (Km) for

Ap = 2.0 and At = 120 sec.

Disturbed Temperature (°K)} Versus Height (Km) for

Ap = 2,0 and AT = 120 sec.

Disturbed Flow Velocity (Km/sec)
for Ap = 2.0 and At = 120 sec.

Disturbed Flow Velocity (Km/sec)
for &p = 2.0 and AT = 1200 -sec.

Disturbed Flow Velocity (Km/sec)

for Ap = 2.0 and AT = 1200 gec. -

Disturbed Flow Velocity (¥Xm/sec)
for Ap = 2.0 and At = 1200 sec..

Disturbed Flow Velocity (Km/sec)
for Ap = 6 and AT = 30 sec.

Disturbed Flow Velocity (Km/sec)
for Ap = 6 and AT = 30 sec.

Disturbed Flow Velocity (Km/sec)
for Ap = 6 and AT = 30 sec.

Disturbed ¥Flow Velocit? (Km/sec)
for Ap = 6.0 and AT = 120 sec.

Disturbed Flow Velocity (Km/sec)
for Ap = 6.0 and At = 120 sec.

Disturbed Flow Velocity (Km/sec)
for Ap = 6.0 and At = 120 sec.

Disturbed Flow Velocity (Km/sec)
for Ap = 6 and AT = 2400 sec.

Versus Height (Km)

Vefsus
Versus
Versus
Versus
Versus
Versus
Versus
Versus
Versus

Versus

Height

Height

Height

Height

Height

Height

Height

Height

Height

Height

(Km)

(Ki)

(Km)

(Km)

(Km)

(Km)

(Km)

(Km)

(¥m)

(Km)



Figure 7b Disturbed Flow Velocity (Km/sec) Versus Height (Km)
for Ap = 6 and AT = 2400 sec.

Figure 7c. Disturbed Flow Velocify (Km/sec) Versus Height (¥m)
for Ap = 6 and AT = 2400 sec.

Figure 8a Disturbed Flow Velocity (Km/sec) Versus Height (Km)
for Ap = 10 and AT = 30 sec.

Figure 8b Disturbed Flow Velocity (Km/sec) Versus Height (Km)
for Ap = 10 and AT = 30 sec.

Figure 8¢ Disturbed Flow Velocity (Km/sec) Versus Height (Km)
for Ap = 10 and AT = 30 sec.

Figure 9a Disturbed Flow Velocity (Km/sec) Versus Height (Km)
' for Ap = 10 and AT = 120 sec.

Figure 9b Disturbed Flow Velocity-(Km/sec) Versus Height {(Km)
for Ap = 10 and At = 120 sec.

Figure 9c¢ Disturbed Flow Velocity (Km/sec) Versus Height (Km)
‘ for Ap = 10 and AT = 120 sec.

Figure 10a Disturbed Flow Velocity (Km/sec) Versus Height (Km)
for Ap = 10 and AT = 1200 sec.

Figure 10b Disturbed Flow Velocity (Km/sec) Versus Height {Fm)
for Ap = 10 and AT = 1200 sec.

Figure 10c  Disturbed Flow Velocity (Km/sec) Versus Helght (Km)
for Ap = 10 and At = 1200 sec.

Figure 1la Disturbed Flow Velocity (Km/sec) Versus Height (Km)
for Ap = 10 and AT = 2400 sec.

Figure 11b Disturbed Flow Velocity (Km/sec) Versus Height (Km)
for Ap = 10 and At = 2400 sec.

Figure llc Disturbed Flow Velocity (Km/sec) Versus Height (Km)
for Ap = 10 and AT = 2400 sec.

Figure 12 Velocity Profile for Ap = 6.0 and AT = 30 sec. 1200 sec.
~and 2400 sec. at time being 40 min. after the explosion.



cm? erg/gm® sec)
878

Q/p®

102"

T T T

1

1p28

T TTITy

T

(028

FUYTIT

T

§ 03

¥ TT17}

102,

L

Radiative Cooling Rate of an

Optically Thin, High Temperature Plasma

after Cox ond Tucker (1960)

gl I 1 fren Ao L tazren:l Lot i gy

109

104- 105 ‘56 . 107 10@
T (K)
FIGURE 1



Intermediate
Step

Final Step

FIGURE 2. FLOW DIAGRAM

Start

[Read, TSTPP,T ]

Institute Variables

n n n
t, P T_s U_
1 1 1

Specify lower boundary DE, Tg, u?

| [y

'0.25 Ar

IUnl + af
1 i

At £ min

Calculate old fluxes

F, K

1

-nt+l =nt+l =n+l
oy LTy LUy

Caleculate Intermediate variabf51

Calculate intermediate fluxes
§n+1, En+1
~q ~1i

Calculate new variables

excepts boundaries
p[_ﬂ'l , Tr}+l , Un+l :
i i i

using interpolation

Calculate upper boundary variables

yes

£ - £ + At ,
Lower boundary
n+l ol
pl = p*
Tn+1 - Tn
1 *

gotl = gntl pn+1
1 2 2

nt+l
/pl




GM/CC

10™6-

10~

DENSITY

0.043

r

—
0.85 1.40

Soiar Radius

FiG.3-0



TEMPERATURE
I O+7_

AT=120 sec
Ap=20

75 min.

+5
T T

-
0.043 0.49 0.95 140 .85

Solar Radius

FIG.3~b

2.30



VELOCITY

100,00+
~ Adiabatic
AT =)20sec t 21208
Ap =20 pRTSE
e 2.
72.00- ™. 3/ =290
44,00
(&)
w
v
~
=
w 16.001
~12.001
'40.00 ‘ | T T T |
0.043 0.49 0.9% 1.40 .85

Solar Radius

FIG.3-c¢c

230



GM/CC

Ap=2
AT={200sec

DENSITY

1

0.95
Solar Radius

FiG.4-a

L]

.40



TEMPERATURE

7
10 ] i
Hp=2
. A T= 1200 sec
y
g
| ;N ;80
I /30 z \ 45 ';' ."_ ?5 min-

10 T T t
0.043 049 Q.85 .40 - 1.85 2.30

Solar Radius

FIG.4-b



100.00

72.001

 44.00+

KM /SEC

AT=1200sec
Hp=2.0

VELOCITY

-40.00
0.043

0.49

1
095

Solar Radius

FiIG.4-¢

T
1.40

2.30



DENSITY

Ap=6
AT=30sec

| 0—8 i 1 1

1
0.043 049 0.95 .40 .85 2.30
Solar Radius

FIG. 5-a



) O+7

PRI S B |

A

TEMPERATURE

|0+5

0.043

]
049

0.95

Solar Radius

FIG.5-b

i |
1.4Q

1
.85

2.30



KM /SEC

100.00 -

72,004

44,00

16.00

NT=30sec
Ap=60

"VELOCITY

~12.00 -

1 1 1

40.00
0043

049

095 .40 .85

Solar Radius

FIG-5-c

2.30



GM /CC

)
0.043

-

1072+

DENSITY

Ap=6.0
AT=120 sec

L 1

0.49 0.5

Solar Rodius

FIG.6-0

1.40

.85

2.30



ra J.__L___‘
b

TEMPERATURE

50 min,

i

0.043

0.45

0.95
Solar R.odius

FIG.6-b

1.40

.85

2.30



KM /SEC

100.00 -

72.004"

44.004

re00d

GEAT s@wn

T=120sec
p=6.0

VELOCITY

-12.00-

-40.00+— * . > L e
0043 0.49 0.95 140 1.85 i2.30

Solar Radius

FIG. 6-c



GM /CC

Ap=86.0
AT= 2400 sec

DENSITY

10-8
0.043

i
049

|
0.95
Solar Radius

FiG.7-a

(40

.85

J
2.30



TEMPERATURE

+5 4 1 1 i
T0.043 0.42 0.95 1.40 .85 230

Solar Radius

FIG.7-b



100,00+

7200 4

44,00

KM/SEC

AT=2400sec
aAp=6.0

VELOCITY

S50 min. .

-12.00

F il

-40.00-
0043

049

1
0.95
Solar Radius

FiG.7-c

L40

1.85

2.30



GM/CC

|0f2~

DENSITY

Ap=10
AT=30sec

1

0.043

1
0.49 095

Solar Radius

FIG. 8-a

.40



Toxd

7

TEMPERATURE

| 1
0.49 095 : 1.40 .85

Solar Radius

FI1G.8-b

2.30



VELOCITY
100.00

A T=30 sec
Hp=10

72.004

44,00+

KM /SEC

16.00-

-12.00

-40.00 - . L

0.043 049 095 .40
Solar Radius

FiG.8-c

.88

2.30



GM/CC

Hp=10
A T=1200set

DENSITY

0.043

: L)
0.3
Soler Radius

FiG.9-a

T

|40

k
2.30



| o+7

AHT=120sec
A p=i0

TEMPERATURE

0.95 1.40
| Solar Radius
FIG.9-b



VELOCITY

10G.00 4

AT= 120 sec
Ap=10

72.00-

40 min.

44.00

16.00

12.00

- 40,00 - 1 1 ] { 1
0.043 . 0.49 .95 140 .85 2.30

SOLAR RADIUS

FiG. 8-¢



GM/CC

Lp=10
OT=1200

-DENSITY

0.043

0.49

T

.95 .
Solar Radius

FIG.10-a

140

.85

2.30



107 -

10*€

F AP W B

+5

TEMPERATURE

1

IO0.('343

0.49

0.85

Solar Radius

FI1G. 10-b

1
{40

i
1.85

2.30



100.004

72.00+

44.00+

KM/SEC

16.00

AT=1200 sec
ADp= 10

VELOCITY

12.004

-40.00
0.043

T
0.49

—
0.95

Solar Radius

FIG. [10-¢

1.40

2.30



DENSITY

Ap=10

AT= 2400sec

GM /CC

0-8 1 { 1

0.043 0.49 0.95 1.40 .85 2.30

Solar Radius

FiG.11-a



X 10

TEMPERATURE

;/ ‘\

0.043

0.49

095

Solar Radius

F1G.1)-b

1,40

1,85

2.30



VELOCITY
T 100.00+

OT=22400
Ap =10

Q
Q
-
=
(]
16.00 \ \ \
. \ v
L) [} \
]
\ \ \
N AY
N \_‘ “~
-12.00-
-40.00- L : 1 ! L -
0.043 0.49 _ 0.95 .40 (.85 2.30

Solar Radius

FIG.li-¢c



1000

FiG. i2

p=6.0
T=40min.
800+
600
~
\ -
= ‘ A/\\
¥ 400- PR
> ‘ !/m 2
| s
S < \
S | 7l 67212008
W 200 | £T752400S o7 T
> R
L"'" - N
\_____/‘“ /_'_‘. ) Y&?"i 0
. /.’t \\\/A7=30 .
’ . [;', \\ \
0 == o —
LA Steady State
L
-200-
400 ' ! 2 s ! P .
0.8 2.5 45 6.5 8.5 105 12.5 14.5 5
(x10%)
km



APPENDIX A

Derivation of Conservational Form of Equations

The governing equations for the present problem written in

spherical coordinates are

Continuity; %%-= - g%-(pu} - ng . (A-1)
‘ au du 1 3P '
M tum; —= - - = = . A-2
omentum ot u5;- > Br g { }
. e de , P fap ,  3p ' ,
Energy; Q-EE s - pu-g; +-E_ (§;-+ u 3;) - QR’ but by virtue

of Equation (A-1), this can be written

e e du 2u
SE o ppE o p e A=3
P at . pu or P Jr P R : (4=3)

Continuity equation (A~1l) is already in conservational form.
Multiplying p to equation (A~2) and rearranging with the aid of equation

(A~1), we have momentum conservational form of equations,

208 2 (pup) - pg - i
at ar

2pu

T.

, (A-4)

noting however p = (y~1)E - -1 pu’ by definition, equation (A?h) hecomes
2

3w 3 [ e L (=D 2] 20wl .
e [(v DE - D ouz| - - 220 (A-5)

Energy conservational form is found by adding four equations, i.e.,

£ x eqn. (A-1), %; %X eqn. (A-2), % x eqn. (A-4) and eqn. (A-3).
2 .



Collecting 3/9t terms, we have after some simplification,

-9 pu?y _ OE
— + ) = == . A-6
o (pe 5 ™ (A-6)

Collecting 9/3r terms and other remaining terms, we get, after

some simplifications,

] pu? 2u [ pu? ]
- — + -+ —— - - — E + —— 4 -
[u(p pe > )] upg ~ p > P %

or
' (A-7)
= - -é% [u (vE - (J:z-l—)' Duz)] - pgu - Qg - % [U(rE - -g—;l-l puz)]

Thus, energy conservational form of equation is

9E _ _ 9 _ -1 2] - _2 g~ (y-1) o2 A8
ot ar {%CYE 2 ou {] ogu = Qg r [%(Y 2 P )] ¢ )



APPENDIX B
COMPUTER LISTING

1 * c
ze oo TOME DIMENSIONAL MOVING SHOCH THROUGH THE SOLAR ATMOSPHERE
3¢ e 95 INVESTIGATED 3y UTILIZING FINITE DIFFERENCE TECHNIGUE
B C BASEN ON THE LAX=SENDROFF COMSERVATIONAL LA™ e
i ¢ THE FINAL S1FFERENCE SCHEME 1S BASED ON RURIN~BURSTEIN,S METHOD.
& C '
F¥T PARAMETER IMAX=44 o e
R . PARAMETER JMAX=5
Ge - REAL K19K2,K23
e REAL KIH4KZH,K23H - e
11 REAL KIAsKIR,K2A1K2ReKIAIK3IR
j2 LOMMDNIBLOC;/lHl:lMZ :
13e  COMMON/RLOC2/GAMyGAMLyGANI W GSRS (4R e
BEL - COMMON/BLOCI/RXCIMAKY 3 X (THAXY PHT(IMAKY ,RKSHTIMAK)
15 T COMMONZBLOCH/FLLIMAX) ZF2UIMAXY yFICTIMAX) K20 TMAXYaKILTIMAX)
L6% L bhKYCIMAX) . e e e e,
17+ COMMNIN/RLOCS /UL LTMAX) 420 THMAXY ,UBLTIMAX) :
18+ COMMAN/RLOCZ /DU IMAXY , TECTHMAX)
yee COMMON/BLOCH/UINWTERyU2G VUG UG B L s
21 o COMMON/RBLOCTZZULT W UZT+UUT U3 STEL
21+ COMMON/RLOCB/TECIIMAX) JULICEEMAX)
S22 . COMMAN/BLOCS/ZUIPTMAX s TMAX) JHUPLUMAX IMAX )y TEPTIMAX, IMAXD)
214 COMMON/BRLOCEC/HX(IMAK) ,CX{TMAX])
24% COMMON/BLOCTS/ ULALTMAY) yU2ACIMAX) ,UIA(CIMAX Y, UIRCTIMAX]),
25+ . FUZBCIMAXT  U3REIMAYY
S Ehe COMMON/BLGCIZ2/ FLACTMAX IS F2ACIMAX Y, FAALIMAXYRFIBIRAN Y,
e IF2B0IMAX ) ,FAR{IMAX)
2R . COMMON/BLOCI3/UIHLIMAX) ZU2ZHEIMAX) JUUNCTHAXD) (TEHCIMAXE o
20 COMMON/BRLOCIH/KIH{IMAX)Y (K2H{TMAX) JKIHTIMAX]
34 COMMON/RLOCIS/UIHETIMAX ) JUUATTIMAX) ,UUR(TIHAX)
Y COMMONARLOC IS/ DT e e e - R
Jye : coMmowtaLaczsfctIMAx}
33 ‘ COMMDNARLOCIG/ETNIMAX)
4. ONHGN/BL0C25fK1A(IHAXI.Klﬂtrﬁﬂxl.xzﬂilﬁﬁxi K2B{IMAX) sK3A{TMaX]) "
ige 1KIRTIMAX)
369 ' COMMON/RLOC3A/UACIINMAY) JUUCTIMAXY
37 COMMON/RLOCYZ/QRIMAX) e e e e e e
ane COMMON/ZALOCHA/QRO(IMAX )
29« COMMON/BLOCSC /Y
4y € GaM=aSPECIFIC HEAT RATIO e — S
41 ¢ RS=RAD{US OfF TKE SUN
4oe ¢ HP=HELIGHT OF THE PRQOMINENCE
43¢ _C CHC=HEIGHT O F THE CHROMOSPHERE e
44» C GS=GRAVITATINNAL ACCeAT THE SURFACE OF THE SUN
Koe C NX=%PATTAL ITMCREAMENT
i L L. R=06AS CONSTANT — e et e e e
47 ¢ DT=1TME INCREAMENT
e < DTP=TIME [NCREAMENT TO RECORD DaTAS ON YTHE YAGNET!C TAPE
4. . L UIC=NNPFRTURAED CORONA DENSITYY AT YHE SURFACE OF _THE SUM
Gie c VARTARFE NAMES )
51+ C Ul=neENSTTY .
5o . C UZeMAMENMTUM DENSITY e e e . S
53 C Ud=veELOCITY .
Sy» Y XzSPATIAL COORDINATFE MEASURED UPHARD
5+ e ZaSPATIAL COORDINATE MEASURED DOUNWARD S -
o C SHT=SHOCK DURATION TIME AT VTHE LJAVER BOUNDARY,

S re READ (B, 10y TSY0F
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6}~ IM22IMAX=2
blv .. S . GAMES./3e . .
2! GaMeS/3r e . e
bq?“ GAM3IS3e=GAM |
oA e RS=69SESS '
6se KPa2ES o S o
e HC=3,64
e _ GSm.Z274
62‘ ez e e e e
o DTP=4BJe -
,7lrwuumwmﬂmmﬂ;SQT=6GQJH;__~_,
7}. C1=GAML/R o T T -
721 GSRS=GS*RS*s2
N e CUI10=Y. V47 )3EB
75 ¢ N - B
7&1"”m.dgw—_hmhf,lrlAerArqu
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T Téﬂ- -
e L TP=ge
on- 06 2n 1e1.1 - . e e
o Rx(1)aXxtl)I+RS -
82e . RXSQIT1=RX{1)%e?
- 20 CONTINUE -
o | e e et R o
e DO 77 1=2,1MAX
8753‘ o Rt=x (I-1)1+24C 0.
8; RX(1)=XtYers e )
87 RXSQ{]}=RX (1 #s2
o2, mﬁmwwm“w”5§111;|.5356
1 { 1=l OOFXPM( ' NG IR TE (1IN ol 700%
3 : C6SRS T IRET e e
9f: 77 CONTINUE /ERATECTIIN e (L /RXUTY =L /RX U
L DO 67 I=l,IMAX
9ae CONm2eE=]2 7 7T e
73 Up{1)=CONSUL(T)
qé;___mm_‘_n“myﬂjl?=ﬂt
o, uz(gr=UitTIeyuct) ) T
0 zHl(llﬂ+GSPS/RX(I|
A Afry=Uglrre(rE

o L's (IV/Cl+,5¢
ve. C{I)=SORTIGAMBReTEL | )')'. e e
oo ET(i)=UL(IIaTE(T) /CY -
OO s T4 R LIV
ol yscery=u3cry T T T T
2. TEC({T1I=TE(])
1o __.6C_CONTINUE  *
o Do f1] 1=2,1M8 o T

HY{
s M_ ____"‘tS"(EXP"' e [
[Q:: T CONTINUE . HXCTIY=EXPURX I I ZeX (T4l )X D))
o WRITE (6418) T -
. - H_ﬁ::iEﬁlé.lﬂSlﬂ

E by ltu) (X(7) 1=1,1MAXY i

e y116) (Xtp),1= )
=;;- WRITE (&,105) Pt dnan -

CWRITE tby11z) (ul
. i {1)sl= t
e WRITE (4,115) riztentn h

WRITE (ésily) tUuv -
Vioe WR1TE (6’]9;) (1)Ysl=tIMAYX)



e . WRITE (hel113) (UILT1sl2tsIMAX} T
hr WRITE (64155) |
U12s L WRITE (6,110) (TECMIRLINAX) ‘ B
L1y WRITE (44105) S I ’
T WRITE (65110) (PHI(I)alal,(MAK)
R4 WRITE (64125 L N . e
123+ C '
L e IS e ooty Hansation Ean "
Lpoa e 0 ED B8Y TNCLUDING RaAD
257 g OBTAINED BY Fl?TING OF TUCKER,S RESULTS. " [ATION Euﬂ'”“
iiﬁi'“v .. DO 62 I=lyIMAX
Hees | IF (TE(TI)eGTeB.5E4) GO TO 11 00T T
129 C2=1¢4Etu
B - . me = we PR ,,-_...c 3 = 3 . 5 9
:35: o 1o 79 e . .
33d‘ 31 IF (TE(T}eGT4245E5) GO YO 12 ’
3‘ L. .. L2m3.gE26
134 Ciz=(is o T T T e
135 GO TO 7%
izs: 12 YF tTETI)eGT4740E8) GO TO 13
.1:¢ C2=)eLE32 D o e
' 3F - Ca==1.172
13?*7_‘_‘7 60 10 79
T4 13 ¢2=1.yE23 B
::;: ’o £320,288
i "QRC(II“C2¢CUI(I)‘«z;*!rs{ e
143~ 62 CONTINUE ' H c3> - e
1444 c :
145 ¢ < .
s ¢ o NG O e TR T TR VI TR ST e
che _— . _
et ¢ € INITIAL VALUES OF THE VARIABRLESeses
{ [ 2
i‘:ﬂ; e CALL PLOT LUl VUL TE)
5? te=TPeOTE e —
| HiG* Urti=ugfly)
lflﬁwm_hﬂwmehh“U2!=uzcllwﬁm o
152 Culsiiutg) o T
553@ TEYEIEXE R
(G4 TEI=TE{1)_ . .
S ; e
1Che c
67e _ C. UPWARD PROPAGATLIN
e . UPWARD G SHO
156 % c ENERGY , TEMPERATURE Gﬂégﬁfil”ULﬁTIQNManIEEﬁS OF.DEMSITY.
(594 4 REFLECTED SHOCK MACH NUHéER§°;§°
i bG% € AT THE LOWER DBOUNDARY. THEN THEEJGEgUMED T e KaneN
}:;: g AT RELATrONS‘,,”._mm,mMQQNQLlugﬂimﬁﬁgwﬁggﬂahﬁiﬁ
A3e o uigsurtttez,
| & ‘_‘ - UULE" o T T B R e e e i e bty et et e
s vzD=YlneUUD
;setuﬂ.,A.a._” TEG=TE(} ) o
67 UI0aUIge (TEL/Cl+eS*UUQR2) ST e - -
&R * C )
L bQw . Kit=y
Ty ’ U1 (11=01y ) T Cmmmm
71t vuli ) =uUl g "
72 y2tyymv2¢6

73 uallisUie ' T T e



.

17U TE( I =TEu T -
176¢ U 31=SORTUGAMOROTE NI ) e e e
176¢ EICysUIt)eTELIY/CL . | . -
1770 70 CONTINUE -
178 C e e i i
179" C PREDICTOR STEPesevsn
180~ c .
1BI® . CAUL DYIME (UUGC Y e
182+ IF (DT«LTs2.01) GO TO 200 ' ) '
1B3® IF (TebLTed24) DT®ia
188% SDD=SDT+30s. e ]
185+ 1F (TeGTe5DToANDeToLT+SDD) OTst,
184* CALL FLUXT (UL,UZ,U3TE,UU,C) _
187¢ | CALL EQNI (U3 U25U3,F14F25F31K2, Ka,DT.cx.Hx Kp) S
188 TC . S
189¢% ¢ coRREcYOR STEP
19¢C* c o e
1910 CALL FLUXZ TulasulB, Uzn Uzs.usa,uaa unH UZH U3H TEM,UUCy
192 . TUUA ,UUR, UUH,U1)
193¢ CALL EQNZ (Ut,yU24U3, FLyF2,F3,K2,K3,FIAF2A,F3A, K1 KiHETL,
19y e IFIB s F2RFIRK2H  K3H DT 4CX KX 1K1 A K18, KZA.KZanK3A1K3Bi
1954 TaT+DT
IR C

197 =g REFLECTED SHOCK SIMULATIONTIN TERM OF "THE KNOWN MATH NUMBER,
98w C -

99 . _CaLL BOUND |
o0 ¢ _ :
gle IF (KW+GT+2Z } GO TO 555
a2 o GO TO K& N - o
'Gae 555 CONTINUE
1hye WRITE (6413% T
206 . WRITE {éplZ5) —
1Ghe WRITE $6,114) (UETI)sl=1IMAX)
nye WRITE (6,125}
o8 . WRITE (61053 (UUGL)eT=1IMAX)
HL WRITE (6,195) ' o
L COWRITE (6,110) (U3(T)el=1IMAXD
'pre o WRITE (Aw105) L SR
SEL WRITE iéull”) (TE(I1s1atsIMAX) o
e WRITE s 115}
?lﬂfmuwmwmmMMLmWRlTE_tbe!lu) (ET{TY =1 IMAXK) o B
s WRITE (&4y12¢) .
"16¢ . DO 404 I=sls[MAX . .
lejmﬁﬂW__mwﬁwﬁtlS?SQRT‘GAHSR!TELIILW_#"N_M__ '
rpae H04 CONTINUE
‘1g# Kwen .
2pe . b6 _CONTINUE ) )
'2. [ i KaWeKW+ 1 T
122w C *
23 €. PLOTYING 0T THE PRRYURHED VARIABLEScooeos ... -
24 C
rp5e 1IF (T.GT«TP) GO TOo 156
'24% .. 60 YO 1sd S A
127 150 CONTINUE T
28% CALL PLOT {141V, TE)
2% ... . TpaYP4+DTP . . o
3o 4G IF (T«GT«TSTOP) GO TG 2G2 e
=T GO YO 7u_ ., R
: . — o



232% 700 CONTINUE T T
233 ¢ ' o .
2340 K= .

235« ... DO 1Py ImlyiHAX — e

234 X{K)=x1(1)

2379 KzK+|

238 ¢

I T e T IRET

280 C :

”gg%fmwnw_ﬁ_m”mmlﬂﬁmighhgﬂlﬂﬁ 1S 70 RECORD THE. DATAS ON THE TAPEsess

L] C :

243 DO 210 Jmi,gMAX

244 DO 2%y 1=lyqmax

245w IF (1«EQeIMAX) X{]Im]aEIT7

246 ' ~ TF (1eEQeIMAX) UIP{UsI)=lanE3? . .
2RI e TF LT e R IMAR W AND o J o EQ o JMAX )Y XU IV=29.0E3% o ot
248 IF (1+EQsIMAXANDJoEReJMAX) UIPIJ,1)29,0E37

249 WRITE (9) X(1)sUlPLJy4l)

25ne 210 _CONTINUE L e S
25§+ DO JLG Jul JMAX '

252% DO 355 l=1,1MAX

253 e o IF_ tleEReIMAX) X{1)®yenEe3?7

264 T TR U1 LEGLIMAXY uUUp UYLl QEYY T T
255 IF (1.EQaIMAXAND JoERGIMAXY X(1)39,5EDT

_286% . TP (TeEQaIMAKeAND . JEQe yMAX) UNPL,1)3%43E37

267 WRITE (9} X{1),UURP(Js])

25R% 300 CONTINUE

259w« e DO G B UM A e e e
280" DD 400 1=l IMAX R R
24 ' IF (1+EQeIMAX) XU1)=}o.aED7

L2820 : IE. (1 2EQeIMAX)I.TEP{Jsl)mlEAT _

263 IF (1eEQeIMAXaAND o JdEQaJMAX) X[ )eG(E37

7644 IF (1«EReTMAXoANDoJsEGoJMAX) TEPLJ,1)=9,0E37

265% L WRITE (%) X(I)GTEPCJUNIN. . .

264" 400 CONTINUE :

2670 STOP
24Be - JC_FORMAT (E15,4)  _

269 46 FORMAT (2F15.4,E15.48)

2704 105 FORMAT {1H ) .

2Tie o 1VG FORMAT DXy SENVeqY

272+ 120 FORMAT {1Hl)

273 : END

ND OF COMPILATION: NO DIAGNOSTICS,



SUBRAUTINE FLUX) (UI;UZ.US TF UU C)

i ]
2% PARAMETER IMAXedyu T T
3e REAL K14K2:4X3
ue COMMON/RLOCL/1MY 2 1M2
5¢ COMMONZBLOC2/GAMsGAMY , GAMITGSRE, CIyR A
& CUMMQNIRLOC3IRK(IMAX)'XIIHA*?oPHIlIMAX};RXSQ(!MAXI
R A connoufshocqxric:Mnx),leIMhX),FStIMAXI.KZtIMAXI-KafIMAX?
av L KLECTMAX) o
g COMMON/RLOCB/TECTIMAX) JUICLIMAX)
b0®  COMMON/BLOCI6/DT
11 COMNON/HLDC‘-IZ/QR‘(IMAXl
120 COMMON/BLOCH3/QRC(IMAX) B -
1ae DIMENS 10N UltIMAXl,UZ!]HAX!,UJ(IMAxs,TE(IMAXI R
rte DIMENSTON UU(!MA¥1nC(IMAX).QDtIHAK),DH(]HAX} B STu
[ DIMENSION UDLIMAXY'
. S S ‘ : e ' RS
(7% ¢ C7 aND €3 ARE CONSTANTS USED IN TUCKER'S RADIATION EQN,
18 C CO=CONVERSION FACTOR
19 € U -
20 COstegb=22 o o o
21+ ACE3e - | . T
22¢ € | e
23¢ C "RADIATION EFFECTS ARE INTRODUCED BY INCLU01MG RADIATION Ean
24w C OBTAINED RY FITTING OF TUCKER,S RESULTs,
25¢ o ..bo &u i=l,ImpxX
269 IF (TE{I1+GTa5e3E4} GO TO 11 T
27+ C2e1+GETG S L :
28% __ C3®3e55 o R A N i
29+ 60 YO 77 - e
ans 1t IF (TE'I)-GT.Z.SES' Gh 70 12
31 _C23e0E26 o
aze Caz0e L o T T T
330 GO YO 77 o
34¢ 12 1F ETE(1)+GTa7enERY GO TO_13 o e
ig» C2mtayEld2 i - -
4% Ciz=je4172
a7¢ oGO YO I A R .
3ge 13 C2vioLER3 T S
394 C3=530288 ' S -
Wme. 77 GRET}=C2(ULIIl#e2) e TECLLeeCI)0CO T
] 40 CONTINUE o T -
:\2* po R (=22,1M1
43w CQRETY==0R{1}++5%f 50 (QR(I+1)+QR 1= + e
Yye 88 CONTINUE ClefleQRE1=11)gRCELISCON -
45 % QRE]))IBaGe(=QRI1)+.58{QR(2I6QR(1))4RRCE1)COY’
_%3immwhﬂg QRIiHAK’“-5¢!’QR{IﬁA13+.5tJQR(lMA!)*QBiJML}}°QRClIMAK)«COE
4w Do &6 1=2,1M1
49 . BT R S TR A TR £2 B I
SO= &6 COMTINUE
gy 0o 20 1=2.1MI
2% o IF.(UDf1)eGTaLe) GO TO. a6
G Go Y0 24 T o
540 30 UDC1Y=00
55 20 COMTINUE ST
Sb . U D ‘ 1 ‘ = ‘:l . B T etk el A S e —— i i
570 UDCIMAXI=0a o



40 DO 54 1=22;1Mi

LA LI A R ETUITE & S I I o 3 SN B2 VAT N 08 00 o 1R 00 SO L
bz* ' IF (NDM{T)1GT,.1.3} GO TO BQ R T AR ‘
63 QD(1)=04 , L e

648 - 60.T0 50 . RO S S
65 80 CONTINUE
bo* SMepM L}

L BT* PAI=l24eGAM/IGAMY ) I (SMen2)~GAN]/IGAM*TN)]

68 S!G=(GAH+I.)!iSM'«Z)/lGAMI*SM'*2+?ol
Lo e ZETA®SQARTI(PAI/SIG) o =
70¢ IR B EL') (!)tic{l)--thlnsﬂlpAl—!.)O(I./SIG*lui _

TTET T R (GAM/GAME ) s (ZETAS# 2+ 1) T/IDTRGAMYT =
72%.. QB (1) =ABS(QD(1}) , .

13 ' 5¢ CONTINUE - R
74 QD¢13=0 :

75 - GDlIMAX) =0 , _ .

_1é* < . . P, , R
77 ‘ lﬂ IﬂlglMAX ST B T T
7ge Fl(])-uztll
79 . _ F2(1)=GAMLeu3(1)+g .5*6AH3*U2(1)¢*2/U!!1!
gpe \ T 4 Be{AC*®2 10U (1 eiyD([)ve2)

81 FAa(II=(U20T /UL (T ) 8 (GAMRPUI (T~ 5eGAMIoU2(T ) e2/UL (1)
B29 1#.59 [AC*®2)0UL(TYe(UDI])%02))

TBas T T TR e 200201 ZRXUT) )
gys o T kst laeUi{])eGSRS/RASAL]) L
g5 _ lf?c°U2¥11’*2/(RX(I]0U[(I))Hru“_ _ L
YY) K2([)1==U2(1)%GSRS/RXSQ{])
87w PmZoolJ2{1)e(GAMU3 () =GamMEe G2U2( T e02/U01(1)

_ae _ 3*e5¢fAC¢GZI¢U!(I)chD(tl“Z)l/tRX(I)¢UI 1))

Bg=s 44+QRD( 1) .
o 10 CONTINUE

vis ' ~ _RETURN. — ;

92 ‘ END

IDOF CCOMPTUATTONY — — N0 DTAGNGSTICSY o -

1@ SUBROUTINE EQNY (ut,u2, u3 1F14F2, F3 Kz.xa.DT cqux,Kl»
20 PARAMETER IMAX=H4{ ' Do -

36 : REAL KEsK2,K3

ve __COMMON/RLOCI/IMLsIM2

5 COMMON/BLOC2/GAMsGAML  GAMA, GSRS,C1,R

Lo COMMON/HLOC3/RX11MAXIgx(lHAX)gPHI(IMAX),RXSQ(IHAXl

7 COMMON/BRLOCIE/ UBACIMAX)UZACIMAX) GUIACTIMAX) JUIBUTIMAX),

Re CJU2BCIMAX) ,U3IR(IMAX) T
g . COMMON/BLOC) 2/ FIAtlMAX);F?A(EMAX)BFSA(znax,nrgatimgx;,

10® o IF2BLIMAX),F3R(IMAX) L .
bie COMMON/BL0C13/UIPtIMAX)QUZH(IMAX19UUH(iMAX] YEM(IMaxY T
p2e COMMON/BLOCIY/KIH{IMAX) K2HITMAX ) KAHLTMAX)

13 . COMMON/RLOCIS/U3BH{TMAX)UUACTMAX) UUB(INAX]
14w DIMENSTON HXCIMAX) CXIIMAXY T
) DIMEMSION FLUIMAXY JF2UIMAXY F30IMAX) gK2(IMAXY yKICTMAX) JKILIMARY

b&® . __DIMENSION UL(IMAX),U2({[MAXY,UICIMAXY

i ) -



RO R"'I‘Z-THI

11

tF28LTHMAXY FIROIMAXY

ot

7o
18 UIA(I)=-5*IUI(1+1)+UI(111-(071(1(141!-X(!|31'€F1114l’-rlll’)+
9% 1 a5eDTedKi (e ey (I3 s
25 UZA(!l=-5*(U2{!+I16U2(111'¢DT/(11I*l!-X{I!}i'(F2(I4!)“F2IIJl+
2|~ P(aSenTIe{R2(1411+K2¢CT 1)

22 U3A(II=-5*EU3!I+1)+U3III1-tDT/lX!!+1}-x(11)l‘(FS‘I*l’-?JII1)+_mm
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iy OF CAMPILATION: , NO DIAGNQOSTICS.
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APPENDIX C

Presentations

During the period of performance of this contract, the following
were presented.

"A Compressible MHD Model of the Development of a Sunspot,"
Annual Meeting of the Solar Physics Division, American Astro-
nomical Society, Huntsville, Alabama, November 17- 19, 1970, with
M. Hagyard and Y. Nakagawa.

"H Flares: The Response of the Chromosphere to a Downward Shock
Wave," Annual Meeting of the Solar Physics Division, American
Astronomical Society, University of Maryland, April 4-6, 1972,
with S. M. Han and Y. Nakagawa.

"Won-Linear Study of the Dynamical Behavior of Force~Free Magnetic
Field," Annual Meeting of the Solar Physics Division, American
Astronomical Society, University of Maryland, April 4-6, 1972,
with M. Hagyard and Y. Nakagawa. '

"Some Characteristics of Disturbed Solar Atmosphere,' High Altitude
Observatory Seminar (Invited), July 1973.

"Solar Atmosphere,” AIAA (American Institute of Aerc. & Astro.)-
Alabama Section Space and Atmogpheric Sciences Panel Meeting,
(Invited), December 3, 1973.



